Weighted Inequalities for the Two-dimensional One-sided Hardy-littlewood Maximal Function

نویسنده

  • L. FORZANI
چکیده

In this work we characterize the pair of weights (w, v) such that the one-sided Hardy-Littlewood maximal function in dimension two is of weaktype (p, p), 1 ≤ p < ∞, with respect to the pair (w, v). As an application of this result we obtain a generalization of the classic Dunford-Schwartz Ergodic Maximal Theorem for bi-parameter flows of null-preserving transformations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted inequalities for commutators of one-sided singular integrals

We prove weighted inequalities for commutators of one-sided singular integrals (given by a Calderón-Zygmund kernel with support in (−∞, 0)) with BMO functions. We give the one-sided version of the results in [C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl., vol. 3 (6), 1997, pages 743–756] and [C. Pé...

متن کامل

Norm Inequalities Relating One-sided Singular Integrals and the One-sided Maximal Function

In this paper we prove that if a weight w satisfies the C q condition, then the Lp(w) norm of a one-sided singular integral is bounded by the Lp(w) norm of the one-sided Hardy-Littlewood maximal function, for 1 < p < q <∞.

متن کامل

Best Constants for Two Non-convolution Inequalities

The norm of the operator which averages |f | in L p (R n) over balls of radius δ|x| centered at either 0 or x is obtained as a function of n, p and δ. Both inequalities proved are n-dimensional analogues of a classical inequality of Hardy in R 1. Finally, a lower bound for the operator norm of the Hardy-Littlewood maximal function on L p (R n) is given. A classical result of Hardy [HLP] states ...

متن کامل

Sharp Weighted Inequalities for the Vector–valued Maximal Function

We prove in this paper some sharp weighted inequalities for the vector–valued maximal function Mq of Fefferman and Stein defined by Mqf(x) = ( ∞ ∑ i=1 (Mfi(x)) q )1/q , where M is the Hardy–Littlewood maximal function. As a consequence we derive the main result establishing that in the range 1 < q < p < ∞ there exists a constant C such that ∫ Rn Mqf(x) p w(x)dx ≤ C ∫ Rn |f(x)|qM [ p q ]+1 w(x)d...

متن کامل

Norm inequalities for the conjugate operator in two-weighted Lebesgue spaces

* Correspondence: ksrim@sogang. ac.kr Department of Mathematics, Sogang University, Seoul 121-742, Korea Abstract In this article, first, we prove that weighted-norm inequalities for the M-harmonic conjugate operator on the unit sphere whenever the pair (u, v) of weights satisfies the Ap-condition, and uds, vds are doubling measures, where ds is the rotationinvariant positive Borel measure on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007